今天给各位分享高三年级数学下学期复习知识点的知识,其中也会对高三年级数学下学期复习知识点进行解释,如果能碰巧解决你现在面临的问题,别忘了关注本站,现在开始吧!
高三年级数学下学期复习知识点的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高三年级数学下学期复习知识点、高三年级数学下学期复习知识点的信息别忘了在本站进行查找喔。
本文导读目录:
1、小学三年级数学下册全册知识点归纳,孩子学习重点考点都在这!
小学生们通常会利用在家的时间来预习新知识,为了方便各位学生学习数学,老师整理了小学三年级数学下册知识点汇总,希望可以帮助大家理清知识脉络,提前学习新知识。 第一单元 位置与方向 1、① (东与西)相对,(南与北)相对,(东南—西北)相对,(西南—东北)相对。 ② 清楚以谁为标准来判断位置。③ 理解位置是相对的,不是绝对的。2、地图通常是按(上北、下南、左西、右东)来绘制的。(做题时先标出北南西东。) 3、会看简单的路线图,会描述行走路线。 一定写清楚从哪儿向哪个方向走,走了多少米,到哪儿再向哪个方向走。同一个地点可以有不同的描述位置的方式。(例如:学校在剧场的西面,在图书馆的东面,在书店的南面,在邮局的北面。)同一个地点有不同的行走路线。一般找比较近的路线走。 4、指南针是用来指示方向的,它的一个指针永远指向(南方),另一端永远指向(北方)。 5、生活中的方位知识:① 北斗星永远在北方。② 影子与太阳的方向相对。③ 早上太阳在东方,中午在南方,傍晚在西方。④ 风向与物体倾斜的方向相反。( 刮风时的树朝风向相对的方向弯,烟朝风向相对的方向飘…… ) 第二单元 除数是一位数的除法 1、口算时要注意: (1)0除以任何数(0除外)都等于0; (2)0乘以任何数都得0; (3)0加任何数都得任何数本身; (4)任何数减0都得任何数本身 。 2、没有余数的除法: 被除数÷除数=商 商×除数=被除数 被除数÷商=除数 有余数的除法: 被除数÷除数=商……余数 商×除数+余数=被除数 (被除数—余数)÷商=除数 3、笔算除法顺序:确定商的位数,试商,检查,验算。 (1)一位数除两位数(商是两位数)的笔算方法:先用一位数除十位上的数,如果有余数,要把余数和个位上的数合起来,再用除数去除。除到被除数的哪一位,就把商写在那一位上面。 (2)一位数除三位数的笔算方法:先从被除数的最高位除起,如果最高位不够商1,就看前两位,而除到被除数的哪一位,就要把商写在那一位上,假如不够商1,就在这一位商0;每次除得的余数都要比除数小,再把被除数上的数落下来和余数合起来,再继续除。 (3)除法的验算方法: 没有余数的除法的验算方法:商×除数:被除数; 有余数的除法的验算方法:商×除数+余数=被除数。 4、基本规律: (1)从高位除起,除到哪一位,就把商写在那一位; (2)三位数除以一位数时百位上够除,商就是三位数;百位上不够除,商就是两位数;(最高位不够除,就看两位上商。) (3)哪一位有余数,就和后面一位上的数合起来再除; (4)哪一位上不够商1,就添0占位;每一次除得的余数一定要比除数小。 第二单元 课外知识拓展 5、2、3、5倍数的特点 2的倍数:个位上是2、4、6、8、0的数是2的倍数。 5的倍数:个位上是0或5的数是5的倍数。 3的倍数:各个数位上的数字加起来的和是3的倍数,这个数就是3的倍数。比如:462,4+6+2=12,12是3的倍数,所以462是3的倍数。 6、关于倍数问题: 两数和÷倍数和=1倍的数 两数差÷倍数差=1倍的数 例:已知甲数是乙数的5倍,甲乙两数的和是24,求甲乙两数? 解:这里把乙数看成1倍的数,那甲数就是5倍的数。它们加起来就相当于乙数的6倍了,而它们加起来的和是24。这也就相当于说乙数的6倍是24。所以乙数为:24÷6=4,甲数为:4×5=20 同样:若已知甲数是乙数的5倍,甲乙两数之差是24,求甲乙两数? 这里把乙数看成1倍的数,那甲数就是5倍的数。它们的差就相当于乙数的4倍了,而它们的差是24。这也就相当于说乙数的4倍是24。所以乙数为:24÷4=6,甲数为:6×5=30 7、和差问题 (两数和 — 两数差)÷2=较小的数 (两数和 + 两数差)÷2=较大的数 例:已知甲乙两数之和是37,两数之差是19,求甲乙两数各是多少? 如图: 解析:如果给甲数加上“乙数比甲数多的部分(两数差)”(虚线部分),则由图知,甲数+两数差=乙数。 如是:甲数+两数差+乙数=甲数+乙数+两数差=两数和+两数差 又有:甲数+两数差+乙数=乙数+乙数=乙数×2 知道:两数和+两数差=乙数×2 (两数和 + 两数差)÷2=乙数 解:假设乙数是较大的数。乙:(37+19)÷2=28 甲:28-19=9 8、锯木头问题。 王叔叔把一根木条锯成4段用12分钟,锯成5段需要多长时间? 如图,锯成4段只用锯3次,也就是锯3次要12分钟,那么可以知道锯一次要:12÷3=4(分钟) 而锯成5段只用锯4次,所需时间为:4×4=16(分钟) 9、巧用余数解决问题。 ①( )÷8=6……( ),求被除数最大是______,最小是________。 根据除法中“余数一定要比除数小”规则,余数最大应是7,最小应是1。 再由公式:商×除数+余数=被除数,知道被除数最大应是6×8+7=55,最小应是6×8+1=49。 ②少年宫有一串彩灯,按1红,2黄,3绿排列着,请你猜一猜第89个是什么颜色? …… 由图可知,彩灯一组为:1+2+3=6(个),照这样下去,89÷6=14(组)……5(个)第89个已经有像上面的这样6个一组14组,还多余5个;这5个再照1红,2黄,3绿排列下去,第5个就是绿色的了。 ③加一份和减一份的余数问题。 例1:38个去划船,每条船限坐4个,一共要几条船? 38÷4=9(条)……2(人) 余下的2人也要1条船,9+1=10条。 答:一共要10条船。 例2:做一件成人衣服要3米布,现在有17米布,能做几件成人衣服? 17÷3=5(件)……2(米) 余下的2米布不能做一件成人衣服 答:能做5件成人衣服。 第三单元 复式统计表 1、把两个或两个以上有联系的单式统计表合编成一个统计表,这个统计表就是复式统计表。 2、观察、分析复式统计表要先看表头,弄清每一项的内容,再根据数据进行分析,回答问题。 第四单元 两位数乘以两位数 口算乘法 1、两位数乘一位数的口算方法: (1)把两位数分成整十数和一位数,用整十数和一位数分别与一位数相乘,最后把两次乘得的积相加 (2)在脑中列竖式计算。 2、整百整十数乘一位数的口算方法: (1)先用整百数乘一位数,再用整十数乘一位数,最后把两次乘得的积相加。 (2)先用整百整十数的前两位与一位数相乘,再在乘积的末尾添上一个0。 (3)在脑中列竖式计算。 3、一个数与10相乘的口算方法: 一位数与10相乘,就是把这个数的末尾添上一个0。 4、两位数乘整十数的口算方法: 先用这个两位数与整十数十位上的数相乘,然后在积的末尾添上一个O。 小技巧:口算乘法:整十、整百的数相乘,只需把0前面的数字相乘,再看两个因数一共有几个0,就在结果后面添上几个0。 如:30×500=15000 可以这样想,3×5=15,两个因数一共有3个0,在所得结果15后面添上3个0就得到30×500=15000 笔算乘法 先把第一个因数同第二个因数个位上的数相乘,再与第二个因数十位上的数相乘(积与十位对齐),最后把两个积加起来。 注意事项 1.估算:18×22,可以先把因数看成整十、整百的数,再去计算。→(可以把一个因数看成近似数,也可以把两个因数都同时看成近似数。) 2、有大约字样的一般要估算。3、凡是问 够不够,能不能 等的题,都要三大步:①计算、②比较、③答题。→ 别忘了比较这一步。 几个特殊数: 25×4=100 ,125×8=1000 4、相关公式: 因数×因数 = 积 积÷因数 = 另一个因数 5、两位数乘两位数积可能是( 三 )位数,也可能是( 四 )位数。 6、一个两位数与11的速算技巧: 第五单元 面积 面积和面积单位: 1.常用的面积单位有:(平方厘米)、(平方分米)、(平方米)。2.理解面积的意义和面积单位的意义。面积:物体表面或封闭图形的大小,叫做它们的面积。1平方米:边长是1米的正方形,它的面积是1平方米。1平方分米:边长是1分米的正方形,它的面积是1平方分米。1平方厘米:边长是1厘米的正方形,它的面积是1平方厘米。3.在生活中找出接近于1平方厘米、1平方分米、1平方米的例子。例如1平方厘米(指甲盖)、1平方分米(电脑光盘或电线插座)、1平方米(教室侧面的小展板)。4.区分长度单位和面积单位的不同。长度单位测量线段的长短,面积单位测量面的大小。5.比较两个图形面积的大小,要用(统一)的面积单位来测量。 背熟:(1)边长(1厘米)的正方形,面积是(1平方厘米)。(反过来也要会说。面积是1平方厘米的正方形,它的边长是1厘米。)(2)边长 (1分米)的正方形,面积是(1平方分米)。(3)边长 (1米 )的正方形,面积是(1平方米)。(4)边长是(100米)的正方形面积是(1公顷),也就是(10000平方米)。(5)边长是(1千米)的正方形面积是1平方千米。 面积单位进率和土地面积单位: 1.常用的土地面积单位有( 公顷 )和( 平方千米 )。 ★“ 公顷 ”→ 测量菜地面积、果园面积、建筑面积★“ 平方千米 ”→ 测量城市土地面积、国家面积 1公顷:边长是100米的正方形,它的面积是1公顷。 1平方千米:边长是1千米的正方形,它的面积是1平方千米。 1公顷=10000平方米 1平方千米=100公顷 1平方千米=1000000平方米 2.正确理解并熟记相邻的面积单位之间的进率。 ① 进率100:1平方米 = 100平方分米 1平方分米 = 100平方厘米1平方千米 = 100 公顷② 进率10000:1公顷 = 10000平方米 1平方米 = 10000平方厘米③ 进率1000000:1平方千米 = 1000000平方米 ④ 相邻两个常用的长度单位之间的进率是( 10 )。 相邻两个常用的面积单位之间的进率是( 100 )。 背熟公式 1、周长公式: 长方形的周长 = (长+宽)× 2 长 = 周长÷2-宽 或者:(周长-长×2)÷2= 宽宽 = 周长÷2-长 或者:(周长-宽×2)÷2=长 正方形的周长 = 边长×4正方形的边长 = 周长÷4 2、面积公式: 长方形的面积=长×宽 正方形的面积=边长×边长 长方形的周长=(长+宽)×2 正方形的周长=边长×4 已知面积求长:长=面积÷宽 已知面积求边长:边长=面积开平方 已知周长求长:长=周长÷2 - 宽 已知面积求边长:边长=面积÷4 A、正确区分长方形和正方形的周长和面积的意义,并能正确运用上面的4个计算公式求周长和面积。 归类:什么样的问题是求周长?(缝花边、围栅栏、围栏杆、池塘或花坛周围小路长度、围操场跑步的长度等等)什么样的问题是求面积?或与面积有关? (课本等封面大小、刷墙、花坛周围小路面积、给餐桌配玻璃、给课桌配桌布、洒水车洒到的地面、某物品占地面积、买玻璃、买镜子、买布、买地毯、铺地、裁手帕的等等) B、长方形或正方形纸的剪或拼。有两个或两个以上长方形或正方形拼成新的图形后的面积与周长。从一个图形中(通常是长方形)剪掉一个图形(最大的正方形等)求剪掉部分的面积或周长、求剩下部分的面积或周长。要求先画图,再标上所用数据,最后列式计算。 C、刷墙的(有的中间有黑板、窗户等):用大面积-小面积。 熟练运用进率进行面积单位之间的换算。掌握换算的方法。 1、低级单位——高级单位:数量÷它们间的进率 如:零钱换大钱,张数减少;300平方分米=3平方米 1、高级单位——低级单位:数量×们间的进率 如:大钱换零钱,张数增多;5平方千米=500公顷 注 意:(1)面积相等的两个图形,周长不一定相等。 周长相等的两个图形,面积不一定相等。(2)大单位换算小单位(乘它们之间的进率) 小单位换算大单位(除以它们之间的进率)(3) 长度单位和面积单位的单位不同,无法比较。(4)周长相等的两个长方形,面积不一定相等。面积相等的两个长方形,周长也不一定相等。 第六单元 年、月、日 (一)年、月、日1、常用的时间单位有:(年、月、日)和(时、分、秒)。2、重要的日子:1949年10月1日,中华人民共和国成立。 1月1日元旦节、3月12日植树节,5月1日劳动节,6月1日儿童节,7月1日建党节,8月1日建军节,9月10日教师节,10月1日国庆节 3、熟记每个月的天数:知道大月一个月有31天,小月一个月有30天。平年二月28天,闰年二月29天,二月既不是大月也不是小月。一年有12个月(7大4小1特殊) 可借助歌谣记忆: 一、三、五、七、八、十、腊(即十二月), 三十一天永不差。 四六九冬三十天,只有二月二十八。 每逢四年闰一日,一定要在二月加。 4、熟记全年天数:平年2月28天,闰年2月29天。平年365天,闰年366天。上半年多少天(平年181天,闰年182天),下半年多少天(所有年份都是184天)。 (1)季度:(一年分四季度,每3个月为一个季度) 一、二、三月是 第一季度(平年有90天,闰年有91天), 四、五、六月是 第二季度(有91天), 七、八、九月是 第三季度(92天), 十、十一、十二月是 第四季度(有92天)。 (2)会计算每个季度有多少天,连续几个月共有多少天。连续两个月共62天的是:7月和8月,12月和第二年的1月;一年中连续两个月共62天的是:7月和8月。 (3)给出一个天数会计算有几个星期零几天。 如:第三季度有(92)天,有(13 )个星期零( 1)天。平年全年有(365)天,是(52 )个星期零(1)天。 (4)公历年份是4的倍数的一般都是闰年:一般情况下可以用年份除以4的方法判断平年闰年。年份除以4有余数是平年,没有余数是闰年。 如:1978÷4=494……2,1978年是平年。 1988÷4=497,1988年是闰年。 (5)公历年份是整百数的必须是400的倍数才是闰年。 如1900年是平年,2000年是闰年。 5、经过的天数的计算: 公式:结束时间—开始时间 + 1 例如:6月12到8月17日是多少天? 6月12日~~6月30日 30-12+1=9(天) 7月有:31(天) 8月1日~~8月17日 有:17(天) 9+31+17=57(天) 6、给出一个人出生的年份,会计算这个人多少周岁;给出一个人的年龄会计算他是哪一年出生的。 如:小华1994年6月出生,到今年6月(15岁)。小华今年12岁,他是(1997年)出生的。 7、通常每4年里有( 1 )个闰年, ( 3 )个平年。(如果说某个人不是每年都能过到生日,8岁过两次生日,12岁过3次生日,那么他的生日就是2月29日。) 8、推算星期几的方法: 例如:已知今天星期三,再过50天星期几? 解析:因为一个星期是七天,那么由50÷7=7(星期)……1(天),知道50天里有7个星期多一天,所以第50天是星期三往后数一天,即星期四。 9、会计算到今年经过的年份:就用2013 - 给的年份例如:中华人民共和国成立于1949年10月1日,到今年建国多少周年? 熟记中华人民共和国建国的时间是1949年10月1日; 算式:2013-1949=64(年) (二) 24计时法 1、普通计时法又叫12时计时法,就是把一天分成两个12时表示,普通计时法一定要加上“上午”、“下午”等前缀。(如凌晨3时、早上8时、上午10时、下午2时、晚上8时) 2、24时计时法:就是把一天分成24时表示,在表示的时间前可以加或可以不加表示的大概时间段得词语。 3、普通计时法转换成24时计时法时,超过下午1时的时刻用24时计时法表示就是把原来的时刻加上12。 如: 普通计时法 24时计时法 上午9时 === 9时或9:00 晚上9时 === 21时或21:00 4、反过来要把24时计时法表示的时刻表示成普通计时法的时刻,超过13时的时刻就减12,并加上下午,晚上等字在时刻前面。 比如:16时等于16 - 12 = 下午4时。(必须加前缀) 5、计算经过时间,就是用结束时刻减开始时刻。 结束时刻-开始时刻=时间段(经过时间) 比如:10:00开始营业,22:00结束营业, 营业时间为:22:00—10:00=12(小时) ★(计算经过时间时,一定把不同的计时法变成相同的计时法再计算) 比如:某商品早上8:00开始营业,下午6:00停止营业,一天营业多少时间? 下午6:00=18:00 18:00 - 8:00 = 10(小时) 6、认识时间与时刻的区别:(时间是一段,时刻是一个点) 如:火车11:00出发,21时30分到达,火车运行时间是(10时30分),注意不要写成(10:30)。 正确的列式格式为:21时30分-11时=10时30分,不能用电子表的形式相减。 再如:火车19时出发,第二天8时到达,火车运行时间是(13小时)。像这种跨越两天的,可以先计算第一天行驶了多长时间:24-19=5(时),再加上第二天行驶的8个小时:5+8=13(时) 又如:一场球赛,从19时30分开始,进行了155分钟,比赛什么时候结束?先换算,155分=2时35分,再计算。 7、会根据给出的信息制作月历和年历。如:某年8月1日是星期二,制作8月份的月历。再如:某年4月30日是星期 四,制作5月份月历。 制作年历步骤:第一:确定1月1日是星期几; 第二:确定12个月怎样排列,第三:把休息日用另外的颜色标出来。 8、时间单位进率: 1世纪=100年 1年 =12个月 1天(日)=24小时 1小时=60分钟 1分钟=60秒钟 1周=7天 第七单元 小数的初步认识 1、小数的意义:像3.45,0.85,2.60,36.6,1.2和1.5这样的数叫做小数。小数是分数的另一种表现形式。 2、小数的认、读、写:限于小数部分不超过两位的小数。整数部分按整数的读法(几百几十几)。小数部分每一位都要读,按读电话号码的方法读,有几个0就读几个零。 例如:127.005读作:一百二十七点零零五。 3、小数与分数的关系、互换。小数不同表示的分数就不同。 例如:0.5=5/10 0.50=50/100 4、运用元/角/分、米/分米/厘米的知识写小数;把7角、7分改写成以元作单位的小数。 5、把“单位1”平均分成10份,每份是它的十分之一,也就是0.1 把“单位1”平均分成100份,每份是它的百分之一,也就是0.01 6、分母是10的分数写成一位小数(0.1),分母是100的分数写成两位小数(0.01)。 7、比较两个小数的大小:先比较小数的整数部分,整数部分大的数就大,如果整数部分相同就比较小数的小数部分,小数部分要从小数点后最高位比起。 8、比大小的两种情况:跑步是数越少越好;跳远、跳高是数越大越好。 9、计算小数加、减法时,小数点对齐,也就是相同数位对齐,再相加、减。 10、小数加减法计算:。(尤其注意:12-3.9;9+8.3 等题的计算。) 11、小数不一定比整数小。 (如:5.1 >5 ;1.3 > 1等) 第八单元 数学广角-搭配(二) 简单的排列:有序排列才能做到不重复、不遗漏。 简单的组合:组合问题可以用连线的方法来解决。 组合与排列的区别:排列与事物的顺序有关,而组合与事物的顺序无关。 声明: 本公众号尊重原创,本资料图文音视频素材来源于网络,好的内容值得分享,如有侵权请联系删除。 更多精彩,点击下方“阅读原文”查看。 【导语】与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。©无忧考网高三频道为你精心准备了《高三年级数学知识点整理》助你金榜题名! 1.高三年级数学知识点整理 复数的概念: 形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模: 复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于-1,即i2=-1; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 复数模的性质: 复数与实数、虚数、纯虚数及0的'关系: 对于复数a+bi(a、b∈R),当且仅当b=0时,复数a+bi(a、b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数;当且仅当a=b=0时,z就是实数0。 2.高三年级数学知识点整理 1、直线的倾斜角 定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。因此,倾斜角的取值范围是0°≤α 2、直线的斜率 ①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。直线的斜率常用k表示。即。斜率反映直线与轴的倾斜程度。 ②过两点的直线的斜率公式: 注意下面四点: (1)当时,公式右边无意义,直线的斜率不存在,倾斜角为90°; (2)k与P1、P2的顺序无关; (3)以后求斜率可不通过倾斜角而由直线上两点的坐标直接求得; (4)求直线的倾斜角可由直线上两点的坐标先求斜率得到。 3、直线方程 点斜式: 直线斜率k,且过点 注意:当直线的斜率为0°时,k=0,直线的方程是y=y1。当直线的斜率为90°时,直线的斜率不存在,它的方程不能用点斜式表示.但因l上每一点的横坐标都等于x1,所以它的方程是x=x1。 3.高三年级数学知识点整理 一、求动点的轨迹方程的基本步骤 1建立适当的坐标系,设出动点M的坐标; 2写出点M的集合; 3列出方程=0; 4化简方程为最简形式; 5检验。 二、求动点的轨迹方程的常用方法:求轨迹方程的方法有多种,常用的有直译法、定义法、相关点法、参数法和交轨法等。 1直译法:直接将条件翻译成等式,整理化简后即得动点的轨迹方程,这种求轨迹方程的方法通常叫做直译法。 2定义法:如果能够确定动点的轨迹满足某种已知曲线的定义,则可利用曲线的定义写出方程,这种求轨迹方程的方法叫做定义法。 3相关点法:用动点Q的坐标x,y表示相关点P的坐标x0、y0,然后代入点P的坐标(x0,y0)所满足的曲线方程,整理化简便得到动点Q轨迹方程,这种求轨迹方程的方法叫做相关点法。 4参数法:当动点坐标x、y之间的直接关系难以找到时,往往先寻找x、y与某一变数t的关系,得再消去参变数t,得到方程,即为动点的轨迹方程,这种求轨迹方程的方法叫做参数法。 5交轨法:将两动曲线方程中的参数消去,得到不含参数的方程,即为两动曲线交点的轨迹方程,这种求轨迹方程的方法叫做交轨法。 6直译法:求动点轨迹方程的一般步骤 ①建系——建立适当的坐标系; ②设点——设轨迹上的任一点P(x,y); ③列式——列出动点p所满足的关系式; ④代换——依条件的特点,选用距离公式、斜率公式等将其转化为关于X,Y的方程式,并化简; ⑤证明——证明所求方程即为符合条件的动点轨迹方程。 4.高三年级数学知识点整理 空间两条直线只有三种位置关系:平行、相交、异面 1、按是否共面可分为两类: (1)共面:平行、相交 (2)异面: 异面直线的定义:不同在任何一个平面内的两条直线或既不平行也不相交。 异面直线判定定理:用平面内一点与平面外一点的直线,与平面内不经过该点的直线是异面直线。 两异面直线所成的角:范围为(0°,90°)esp.空间向量法 两异面直线间距离:公垂线段(有且只有一条)esp.空间向量法 2、若从有无公共点的角度看可分为两类: (1)有且仅有一个公共点——相交直线; (2)没有公共点——平行或异面 直线和平面的位置关系: 直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行 ①直线在平面内——有无数个公共点 ②直线和平面相交——有且只有一个公共点 直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。 5.高三年级数学知识点整理 1、圆柱体: 表面积:2πRr+2πRh体积:πR2h(R为圆柱体上下底圆半径,h为圆柱体高) 2、圆锥体: 表面积:πR2+πR[(h2+R2)的平方根]体积:πR2h/3(r为圆锥体低圆半径,h为其高, 3、正方体 a—边长,S=6a2,V=a3 4、长方体 a—长,b—宽,c—高S=2(ab+ac+bc)V=abc 5、棱柱 S—底面积h—高V=Sh 6、棱锥 S—底面积h—高V=Sh/3 7、棱台 S1和S2—上、下底面积h—高V=h[S1+S2+(S1S2)^1/2]/3 8、拟柱体 S1—上底面积,S2—下底面积,S0—中截面积 h—高,V=h(S1+S2+4S0)/6 9、圆柱 r—底半径,h—高,C—底面周长 S底—底面积,S侧—侧面积,S表—表面积C=2πr S底=πr2,S侧=Ch,S表=Ch+2S底,V=S底h=πr2h 10、空心圆柱 R—外圆半径,r—内圆半径h—高V=πh(R^2—r^2) 11、直圆锥 r—底半径h—高V=πr^2h/3 12、圆台 r—上底半径,R—下底半径,h—高V=πh(R2+Rr+r2)/3 13、球 r—半径d—直径V=4/3πr^3=πd^3/6 14、球缺 h—球缺高,r—球半径,a—球缺底半径V=πh(3a2+h2)/6=πh2(3r—h)/3 15、球台 r1和r2—球台上、下底半径h—高V=πh[3(r12+r22)+h2]/6 16、圆环体 R—环体半径D—环体直径r—环体截面半径d—环体截面直径 V=2π2Rr2=π2Dd2/4 17、桶状体 D—桶腹直径d—桶底直径h—桶高 V=πh(2D2+d2)/12,(母线是圆弧形,圆心是桶的中心) V=πh(2D2+Dd+3d2/4)/15(母线是抛物线形) 【导语】奋斗也就是我们平常所说的努力。那种不怕苦,不怕累的精神在学习中也是需要的。看到了一道有意思的题,就不惜一切代价攻克它。为了学习,废寝忘食一点也不是难事,只要你做到了有兴趣。©无忧考网高三频道给大家整理的《高三年级数学下学期复习知识点》供大家参考,欢迎阅读! 1.高三年级数学下学期复习知识点 不等式分类: 不等式分为严格不等式与非严格不等式。一般地,用纯粹的大于号、小于号“>”“0在(a,b)上恒成立,则f(x)在(a,b)上是增函数;若f¢(x)0的解集与定义域的交集的对应区间为增区间;f¢(x) 3.高三年级数学下学期复习知识点 求函数定义域 常见的用解析式表示的函数f(x)的定义域可以归纳如下: ①当f(x)为整式时,函数的定义域为R. ②当f(x)为分式时,函数的定义域为使分式分母不为零的实数集合。 ③当f(x)为偶次根式时,函数的定义域是使被开方数不小于0的实数集合。 ④当f(x)为对数式时,函数的定义域是使真数为正、底数为正且不为1的实数集合。 ⑤如果f(x)是由几个部分的数学式子构成的,那么函数定义域是使各部分式子都有意义的实数集合,即求各部分有意义的实数集合的交集。 ⑥复合函数的定义域是复合的各基本的函数定义域的交集。 ⑦对于由实际问题的背景确定的函数,其定义域除上述外,还要受实际问题的制约。 4.高三年级数学下学期复习知识点 复数的概念: 形如a+bi(a,b∈R)的数叫复数,其中i叫做虚数单位。全体复数所成的集合叫做复数集,用字母C表示。 复数的表示: 复数通常用字母z表示,即z=a+bi(a,b∈R),这一表示形式叫做复数的代数形式,其中a叫复数的实部,b叫复数的虚部。 复数的几何意义: (1)复平面、实轴、虚轴: 点Z的横坐标是a,纵坐标是b,复数z=a+bi(a、b∈R)可用点Z(a,b)表示,这个建立了直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数 (2)复数的几何意义:复数集C和复平面内所有的点所成的集合是一一对应关系,即 这是因为,每一个复数有复平面内惟一的一个点和它对应;反过来,复平面内的每一个点,有惟一的一个复数和它对应。 这就是复数的一种几何意义,也就是复数的另一种表示方法,即几何表示方法。 复数的模: 复数z=a+bi(a、b∈R)在复平面上对应的点Z(a,b)到原点的距离叫复数的模,记为|Z|,即|Z|= 虚数单位i: (1)它的平方等于-1,即i2=-1; (2)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立 (3)i与-1的关系:i就是-1的一个平方根,即方程x2=-1的一个根,方程x2=-1的另一个根是-i。 (4)i的周期性:i4n+1=i,i4n+2=-1,i4n+3=-i,i4n=1。 5.高三年级数学下学期复习知识点 1、有关平行与垂直(线线、线面及面面)的问题,是在解决立体几何问题的过程中,大量的、反复遇到的,而且是以各种各样的问题(包括论证、计算角、与距离等)中不可缺少的内容,因此在主体几何的总复习中,首先应从解决“平行与垂直”的有关问题着手,通过较为基本问题,熟悉公理、定理的内容和功能,通过对问题的分析与概括,掌握立体几何中解决问题的规律——充分利用线线平行(垂直)、线面平行(垂直)、面面平行(垂直)相互转化的思想,以提高逻辑思维能力和空间想象能力。 2、判定两个平面平行的方法: (1)根据定义——证明两平面没有公共点; (2)判定定理——证明一个平面内的两条相交直线都平行于另一个平面; (3)证明两平面同垂直于一条直线。 3、两个平面平行的主要性质: (1)由定义知:“两平行平面没有公共点”; (2)由定义推得:“两个平面平行,其中一个平面内的直线必平行于另一个平面”; (3)两个平面平行的性质定理:“如果两个平行平面同时和第三个平面相交,那么它们的交线平行”; (4)一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面; (5)夹在两个平行平面间的平行线段相等; (6)经过平面外一点只有一个平面和已知平面平行。 6.高三年级数学下学期复习知识点 函数图像(或方程曲线的对称性) (1)证明函数图像的对称性,即证明图像上任意点关于对称中心(对称轴)的对称点仍在图像上; (2)证明图像C1与C2的对称性,即证明C1上任意点关于对称中心(对称轴)的对称点仍在C2上,反之亦然; (3)曲线C1:f(x,y)=0,关于y=x+a(y=-x+a)的对称曲线C2的方程为f(y-a,x+a)=0(或f(-y+a,-x+a)=0); (4)曲线C1:f(x,y)=0关于点(a,b)的对称曲线C2方程为:f(2a-x,2b-y)=0; (5)若函数y=f(x)对x∈R时,f(a+x)=f(a-x)恒成立,则y=f(x)图像关于直线x=a对称; (6)函数y=f(x-a)与y=f(b-x)的图像关于直线x=对称;高三年级数学下学期复习知识点的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于高三年级数学下学期复习知识点、高三年级数学下学期复习知识点的信息别忘了在本站进行查找喔。
未经允许不得转载! 作者:谁是谁的谁,转载或复制请以超链接形式并注明出处。
原文地址:http://www.juliyx.com/post/7288.html发布于:2025-12-15



